Home  |   Guest Book |    Technical Page |    Personal Page   

Good QA should know following
 
About Me
Who is a Good QA
Latest News
Testing Concepts
Automation Tools
Agile Development
UNIX Basics
Perl Scripting
Python Scripting
MySQL
Technology
Repository
Imp. Commands
My Resume

INDEX

What is 'Software Quality Assurance'?

 

What is 'Software Testing'?

 

What is verification? Validation?

 

What is a 'walkthrough'?

 

What's an 'inspection'?

 

What makes a good Software Test engineer?

 

What makes a good QA or Test manager?

 

What's the role of documentation in QA?

 

What's a 'test plan'?

 

What if there isn't enough time for thorough testing?

 

What is Extreme Programming and what's it got to do with testing?

 

Why does software have bugs?

 

Different kinds of testing

 

What are 5 common problems in the software development process?

 

What are 5 common solutions to software development problems?

 

What is 'Software Quality Assurance'? 
Software QA involves the entire software development PROCESS - monitoring and improving the process, making sure that any agreed-upon standards and procedures are followed, and ensuring that problems are found and dealt with.

 

What is 'Software Testing'? 
Testing involves operation of a system or application under controlled conditions and evaluating the results (eg, 'if the user is in interface A of the application while using hardware B, and does C, then D should happen'). The controlled conditions should include both normal and abnormal conditions. Testing should intentionally attempt to make things go wrong to determine if things happen when they shouldn't or things don't happen when they should

 

What is verification? Validation? 
Verification typically involves reviews and meetings to evaluate documents, plans, code, requirements, and specifications. This can be done with checklists, issues lists, walkthroughs, and inspection meetings. Validation typically involves actual testing and takes place after verifications are completed. The term 'IV & V' refers to Independent Verification and Validation.

 

What is a 'walkthrough'? 
A 'walkthrough' is an informal meeting for evaluation or informational purposes. Little or no preparation is usually required.

 

What's an 'inspection'? 
An inspection is more formalized than a 'walkthrough', typically with 3-8 people including a moderator, reader, and a recorder to take notes. The subject of the inspection is typically a document such as a requirements spec or a test plan, and the purpose is to find problems and see what's missing, not to fix anything. Attendees should prepare for this type of meeting by reading thru the document; most problems will be found during this preparation

What makes a good Software Test engineer? 
A good test engineer has a 'test to break' attitude, an ability to take the point of view of the customer, a strong desire for quality, and an attention to detail. Previous software development experience can be helpful as it provides a deeper understanding of the software development process, gives the tester an appreciation for the developers' point of view, and reduce the learning curve in automated test tool programming

What makes a good QA or Test manager? 
A good QA, test, or QA/Test(combined) manager should:

  • be familiar with the software development process
  • be able to maintain enthusiasm of their team and promote a positive atmosphere, despite what is a somewhat 'negative' process (e.g., looking for or preventing problems)
  • be able to promote teamwork to increase productivity
  • be able to promote cooperation between software, test, and QA engineers
  • have the diplomatic skills needed to promote improvements in QA processes
  • have the ability to withstand pressures and say 'no' to other managers when quality is insufficient or QA processes are not being adhered to
  • have people judgement skills for hiring and keeping skilled personnel
  • be able to communicate with technical and non-technical people, engineers, managers, and customers.
  • be able to run meetings and keep them focused

What's the role of documentation in QA? 
Generally, the larger the team/organization, the more useful it will be to stress documentation, in order to manage and communicate more efficiently. (Note that documentation may be electronic, not necessarily in printable form, and may be embedded in code comments, may be embodied in well-written test cases, user stories, etc.) QA practices may be documented to enhance their repeatability. Specifications, designs, business rules, configurations, code changes, test plans, test cases, bug reports, user manuals, etc. may be documented in some form. There would ideally be a system for easily finding and obtaining information and determining what documentation will have a particular piece of information. Change management for documentation can be used where appropriate. For agile software projects, it should be kept in mind that one of the agile values is "Working software over comprehensive documentation", which does not mean 'no' documentation. Agile projects tend to stress the short term view of project needs; documentation often becomes more important in a project's long-term context.

What's a 'test plan'? 
A software project test plan is a document that describes the objectives, scope, approach, and focus of a software testing effort. The process of preparing a test plan is a useful way to think through the efforts needed to validate the acceptability of a software product. The completed document will help people outside the test group understand the 'why' and 'how' of product validation. It should be thorough enough to be useful but not so thorough that no one outside the test group will read it. The following are some of the items that might be included in a test plan, depending on the particular project:

  • Title
  • Identification of software including version/release numbers
  • Revision history of document including authors, dates, approvals
  • Table of Contents
  • Purpose of document, intended audience
  • Objective of testing effort
  • Software product overview
  • Relevant related document list, such as requirements, design documents, other test plans, etc.
  • Relevant standards or legal requirements
  • Traceability requirements
  • Relevant naming conventions and identifier conventions
  • Overall software project organization and personnel/contact-info/responsibilties
  • Test organization and personnel/contact-info/responsibilities
  • Assumptions and dependencies
  • Project risk analysis
  • Testing priorities and focus
  • Scope and limitations of testing
  • Test outline - a decomposition of the test approach by test type, feature, functionality, process, system, module, etc. as applicable
  • Outline of data input equivalence classes, boundary value analysis, error classes
  • Test environment - hardware, operating systems, other required software, data configurations, interfaces to other systems
  • Test environment validity analysis - differences between the test and production systems and their impact on test validity.
  • Test environment setup and configuration issues
  • Software migration processes
  • Software CM processes
  • Test data setup requirements
  • Database setup requirements
  • Outline of system-logging/error-logging/other capabilities, and tools such as screen capture software, that will be used to help describe and report bugs
  • Discussion of any specialized software or hardware tools that will be used by testers to help track the cause or source of bugs
  • Test automation - justification and overview
  • Test tools to be used, including versions, patches, etc.
  • Test script/test code maintenance processes and version control
  • Problem tracking and resolution - tools and processes
  • Project test metrics to be used
  • Reporting requirements and testing deliverables
  • Software entrance and exit criteria
  • Initial sanity testing period and criteria
  • Test suspension and restart criteria
  • Personnel allocation
  • Personnel pre-training needs
  • Test site/location
  • Outside test organizations to be utilized and their purpose, responsibilties, deliverables, contact persons, and coordination issues
  • Relevant proprietary, classified, security, and licensing issues.
  • Open issues
  • Appendix - glossary, acronyms, etc

What if there isn't enough time for thorough testing? 
Use risk analysis, along with discussion with project stakeholders, to determine where testing should be focused.
Since it's rarely possible to test every possible aspect of an application, every possible combination of events, every dependency, or everything that could go wrong, risk analysis is appropriate to most software development projects. This requires judgement skills, common sense, and experience. (If warranted, formal methods are also available.) Considerations can include:

  • Which functionality is most important to the project's intended purpose?
  • Which functionality is most visible to the user?
  • Which functionality has the largest safety impact?
  • Which functionality has the largest financial impact on users?
  • Which aspects of the application are most important to the customer?
  • Which aspects of the application can be tested early in the development cycle?
  • Which parts of the code are most complex, and thus most subject to errors?
  • Which parts of the application were developed in rush or panic mode?
  • Which aspects of similar/related previous projects caused problems?
  • Which aspects of similar/related previous projects had large maintenance expenses?
  • Which parts of the requirements and design are unclear or poorly thought out?
  • What do the developers think are the highest-risk aspects of the application?
  • What kinds of problems would cause the worst publicity?
  • What kinds of problems would cause the most customer service complaints?
  • What kinds of tests could easily cover multiple functionalities?
  • Which tests will have the best high-risk-coverage to time-required ratio?

What is Extreme Programming and what's it got to do with testing? 
Extreme Programming (XP) is a software development approach for small teams on risk-prone projects with unstable requirements. It was created by Kent Beck who described the approach in his book 'Extreme Programming Explained' (See the Softwareqatest.com Books page.). Testing ('extreme testing') is a core aspect of Extreme Programming. Programmers are expected to write unit and functional test code first - before writing the application code. Test code is under source control along with the rest of the code. Customers are expected to be an integral part of the project team and to help develop scenarios for acceptance/black box testing. Acceptance tests are preferably automated, and are modified and rerun for each of the frequent development iterations. QA and test personnel are also required to be an integral part of the project team. Detailed requirements documentation is not used, and frequent re-scheduling, re-estimating, and re-prioritizing is expected

 

Why does software have bugs? 

  • Miscommunication or no communication - as to specifics of what an application should or shouldn't do (the application's requirements).
  • software complexity - the complexity of current software applications can be difficult to comprehend for anyone without experience in modern-day software development. Multi-tier distributed systems, applications utilizing mutliple local and remote web services applications, data communications, enormous relational databases, security complexities, and sheer size of applications have all contributed to the exponential growth in software/system complexity.
  • programming errors - programmers, like anyone else, can make mistakes.
  • changing requirements (whether documented or undocumented) - the end-user may not understand the effects of changes, or may understand and request them anyway - redesign, rescheduling of engineers, effects on other projects, work already completed that may have to be redone or thrown out, hardware requirements that may be affected, etc
  • time pressures - scheduling of software projects is difficult at best, often requiring a lot of guesswork. When deadlines loom and the crunch comes, mistakes will be made.
  • egos - people prefer to say things like:
  • poorly documented code - it's tough to maintain and modify code that is badly written or poorly documented; the result is bugs. In many organizations management provides no incentive for programmers to document their code or write clear, understandable, maintainable code. In fact, it's usually the opposite: they get points mostly for quickly turning out code, and there's job security if nobody else can understand it ('if it was hard to write, it should be hard to read').
  • software development tools - visual tools, class libraries, compilers, scripting tools, etc. often introduce their own bugs or are poorly documented, resulting in added bugs.

Different kinds of testing

  • Black box testing - not based on any knowledge of internal design or code. Tests are based on requirements and functionality.
  • White box testing - based on knowledge of the internal logic of an application's code. Tests are based on coverage of code statements, branches, paths, conditions.
  • unit testing - the most 'micro' scale of testing; to test particular functions or code modules. Typically done by the programmer and not by testers, as it requires detailed knowledge of the internal program design and code. Not always easily done unless the application has a well-designed architecture with tight code; may require developing test driver modules or test harnesses.
  • incremental integration testing - continuous testing of an application as new functionality is added; requires that various aspects of an application's functionality be independent enough to work separately before all parts of the program are completed, or that test drivers be developed as needed; done by programmers or by testers.
  • integration testing - testing of combined parts of an application to determine if they function together correctly. The 'parts' can be code modules, individual applications, client and server applications on a network, etc. This type of testing is especially relevant to client/server and distributed systems.
  • functional testing - black-box type testing geared to functional requirements of an application; this type of testing should be done by testers. This doesn't mean that the programmers shouldn't check that their code works before releasing it (which of course applies to any stage of testing.)
  • system testing - black-box type testing that is based on overall requirements specifications; covers all combined parts of a system.
  • end-to-end testing - similar to system testing; the 'macro' end of the test scale; involves testing of a complete application environment in a situation that mimics real-world use, such as interacting with a database, using network communications, or interacting with other hardware, applications, or systems if appropriate.
  • sanity testing or smoke testing - typically an initial testing effort to determine if a new software version is performing well enough to accept it for a major testing effort. For example, if the new software is crashing systems every 5 minutes, bogging down systems to a crawl, or corrupting databases, the software may not be in a 'sane' enough condition to warrant further testing in its current state.
  • regression testing - re-testing after fixes or modifications of the software or its environment. It can be difficult to determine how much re-testing is needed, especially near the end of the development cycle. Automated testing approaches can be especially useful for this type of testing.
  • acceptance testing - final testing based on specifications of the end-user or customer, or based on use by end-users/customers over some limited period of time.
  • load testing - testing an application under heavy loads, such as testing of a web site under a range of loads to determine at what point the system's response time degrades or fails.
  • stress testing - term often used interchangeably with 'load' and 'performance' testing. Also used to describe such tests as system functional testing while under unusually heavy loads, heavy repetition of certain actions or inputs, input of large numerical values, large complex queries to a database system, etc.
  • performance testing - term often used interchangeably with 'stress' and 'load' testing. Ideally 'performance' testing (and any other 'type' of testing) is defined in requirements documentation or QA or Test Plans.
  • usability testing - testing for 'user-friendliness'. Clearly this is subjective, and will depend on the targeted end-user or customer. User interviews, surveys, video recording of user sessions, and other techniques can be used. Programmers and testers are usually not appropriate as usability testers.
  • install/uninstall testing - testing of full, partial, or upgrade install/uninstall processes.
  • recovery testing - testing how well a system recovers from crashes, hardware failures, or other catastrophic problems.
  • failover testing - typically used interchangeably with 'recovery testing'
  • security testing - testing how well the system protects against unauthorized internal or external access, willful damage, etc; may require sophisticated testing techniques.
  • compatability testing - testing how well software performs in a particular hardware/software/operating system/network/etc. environment.
  • exploratory testing - often taken to mean a creative, informal software test that is not based on formal test plans or test cases; testers may be learning the software as they test it.
  • ad-hoc testing - similar to exploratory testing, but often taken to mean that the testers have significant understanding of the software before testing it.
  • context-driven testing - testing driven by an understanding of the environment, culture, and intended use of software. For example, the testing approach for life-critical medical equipment software would be completely different than that for a low-cost computer game.
  • user acceptance testing - determining if software is satisfactory to an end-user or customer.
  • comparison testing - comparing software weaknesses and strengths to competing products.
  • alpha testing - testing of an application when development is nearing completion; minor design changes may still be made as a result of such testing. Typically done by end-users or others, not by programmers or testers.
  • beta testing - testing when development and testing are essentially completed and final bugs and problems need to be found before final release. Typically done by end-users or others, not by programmers or testers.
  • mutation testing - a method for determining if a set of test data or test cases is useful, by deliberately introducing various code changes ('bugs') and retesting with the original test data/cases to determine if the 'bugs' are detected. Proper implementation requires large computational resources.

What are 5 common problems in the software development process? 

  • poor requirements - if requirements are unclear, incomplete, too general, and not testable, there may be problems.
  • unrealistic schedule - if too much work is crammed in too little time, problems are inevitable.
  • inadequate testing - no one will know whether or not the software is any good until customers complain or systems crash.
  • featuritis - requests to add on new features after development goals are agreed on.
  • miscommunication - if developers don't know what's needed or customer's have erroneous expectations, problems can be expected

What are 5 common solutions to software development problems? 

  • solid requirements - clear, complete, detailed, cohesive, attainable, testable requirements that are agreed to by all players. In 'agile'-type environments, continuous close coordination with customers/end-users is necessary to ensure that changing/emerging requirements are understood.
  • realistic schedules - allow adequate time for planning, design, testing, bug fixing, re-testing, changes, and documentation; personnel should be able to complete the project without burning out.
  • adequate testing - start testing early on, re-test after fixes or changes, plan for adequate time for testing and bug-fixing. 'Early' testing could include static code analysis/testing, test-first development, unit testing by developers, built-in testing and diagnostic capabilities, automated post-build testing, etc.
  • stick to initial requirements where feasible - be prepared to defend against excessive changes and additions once development has begun, and be prepared to explain consequences. If changes are necessary, they should be adequately reflected in related schedule changes. If possible, work closely with customers/end-users to manage expectations. In 'agile'-type environments, initial requirements may be expected to change significantly, requiring that true agile processes be in place and followed.
  • communication - require walkthroughs and inspections when appropriate; make extensive use of group communication tools - groupware, wiki's, bug-tracking tools and change management tools, intranet capabilities, etc.; ensure that information/documentation is available and up-to-date - preferably electronic, not paper; promote teamwork and cooperation; use protoypes and/or continuous communication with end-users if possible to clarify expectations.

Copyright 2009 Kunal Saxena Inc. All rights reserved